CHAPTER 13 LYMPHATIC AND
IMMUNE SYSTEMS AND CANCER
Again, although these two systems are
separate systems, they function together to serve one purpose. The lymphatic system is composed of
lymphatic fluid (lymph) and the lymph vessels that carry extra proteins,
fluids, blood products and cells from the body, returning them to the
blood. In addition to the lymph vessels
and the fluids which they carry, lymph organs such as the lymph nodes, lymph
nodules, such as tonsils and Peyer’s patches in the small intestine, spleen and
thymus gland, red bone marrow, as well as the cells (lymphocytes) that provide
immunity all function in our immune response. The lymph organs produce the immune response;
the lymph vessels carry the response to the pertinent area.
Although this system is
basic in function, it is complex in how it achieves its objectives, which are
essential for survival of the body. It handles three fundamental tasks: 1) to drain excess fluid that is between
cells and tissues; 2) to transport fats (lipids) and lipid-soluble vitamins (A,
D, E, and K) to the gastrointestinal tract; and perhaps its foremost function,
3) to carry out immune responses to protect the body from pathogens and
invasion.
This section addresses the immune system in general as well
as inflammation, infection, and allergies (hypertensives). But it does not specifically address nursing
care at home. Most of the diseases occurring in this system
are auto-immune diseases, although some result from an inability to provide an
immune response, such as HIV. Medical
attention and treatment protocols are handled by medication, diet, life-style
changes, monitoring their effectiveness and the body’s response to treatment
methods. However, if the diseases
progress to severe forms, outside intervention such as nursing, occupational
and physical therapy may be required.
The latter part of this section briefly discusses auto-immune
diseases. In addition, other sections of
this book address specific auto-immune disorders.
Lymphatic vessels generally run alongside blood vessels. These vessels collect and transport excess
fluid (lymph fluid) that is located between cells and tissues (interstitial
fluid). In so doing, this system provides a fluid balance for the body. Interstitial
fluid is one type of extracellular fluid, a fluid not contained within
cells. The other type of extracellular
fluid is blood plasma. Lymph
fluid, like blood, contains generally the same substances except that lymph
lacks red blood cells and large proteins, for example. The lymph fluid is then returned to the
cardiovascular system for redistribution by the blood vessels. Also present in the lymph fluid are primary
lymphocytes (lymph cells) necessary for immunity.
As fluid is drained and
flows from interstitial spaces into lymphatic vessels, these vessels come in
contact with many lymph nodes that
lie next to these vessels. These
lymphatic nodes, often incorrectly called lymph glands, are responsible for “cleansing” the fluid from
bacteria and other dead components.
They are scattered throughout the body but usually reside in clusters in
close proximity to each other, such as in the neck, underarm (axilla), and
groin (inguinal). These are the areas that physicians often palpate when someone is ill,
and they become enlarged with debris related to infection. These nodes also form lymphocytes, which are
a specialized type of white blood cell (leukocyte).
Lymphatic tissue is that which produces lymphocytes to provide protection from foreign invaders. Primary lymph tissue is found in the red
bone marrow. This is present in
certain types of “flat” bones such as the breastbone (sternum), the end
(epiphysis) of long bones such as the femur, and in the thymus gland. These
are primary tissues because they produce two different types of lymphocytes
providing immunity and protection:
B-cells and T-cells.
Secondary tissues include the lymph nodes, nodules, and the spleen which
produce B-cells only. Most immune responses occur in secondary tissue.
By means of lymphatic
vessels and tissues/organs, this system
provides protection by circulating lymphocytes to engage with intruders,
destroy them, and eliminate them from the body.
This is immunity. And there
are two types of immunity dictated by the lymphatic system: cell-mediated immunity and immunity from
antibodies (humoral immunity).
Immunity Overview:
The body has a variety
of mechanisms that provide general protection and resistance against invasion
even before it requires an immune response.
This first line of defense is
called non-specific resistance and it includes the skin, mucous membranes, and
body chemicals. When these barriers
are compromised, the body is then susceptible and vulnerable for invasion or
disease. The immune responses would then
come into play.
When the skin (epidermis) is intact, it provides a
barricade. It is only when it is damaged by injury, trauma,
ingrown hairs, or moisture, for example, that it becomes susceptible to
invaders such as bacteria, fungal infections, etc. Mucous membranes secrete a liquid substance (mucus) that lubricates
certain surfaces to prevent them from drying out. In addition, mucus traps substances once they
enter the body and aids in their elimination.
Coughing, sneezing, and nose hairs protect the respiratory
system. Saliva
helps to decrease the number of organisms in the mouth and washes the oral
surfaces. Eye blinking keeps eyes moist, so microbes are unable to settle on
the surface. Sweat from sudoriferous glands not only washes away bacteria on the
skin but contains enzymes that help destroy microorganisms. These enzymes, lysozymes for example, are
also found in tears, nasal secretions, saliva, and in gastric fluid. Destroyed bacteria are then engulfed by
certain cells in a process called phagocytosis and transported via the
lymphatic vessels for elimination from the body.
An immunity response is extremely specialized, as it provides the body
with a means of protecting itself against specific and distinct invaders. There
are two types of immune responses: cell-mediated immunity that is dictated
by cells, and antibody-mediated
immunity (humoral immunity) that is directed by antibodies
(immunoglobulins). Both are directed
against antigens.
An antigen is the stimulant for an immune response: an immune response only occurs because an
antigen is present. An antigen is the
invader that has penetrated the boundaries of the fortress and seeks to
overcome the kingdom. These include, for
example, bacteria, virus, fungus, foreign invader, microbe, parasites,
microorganism, pathogen, etc. In
general, an antigen is any substance that is not natural to the body, which has
penetrated nonspecific defenses and provokes an immune response.
Cell-Mediated Immunity:
Cell-mediated immunity (CMI), one response to an antigen,
uses one type of lymphocyte, a “T-cell.” While
T-cells do not have the ability to recognize foreign bodies themselves, they do
leave lymph tissue to pursue foreign entities once called to duty. They rely on another type of white blood cell
(leukocyte), a macrophage, to engulf the microbe and mark it for destruction. This is “activation.”
Once the T-cell is activated, it produces other
types of T-cells (helper-T, killer-T, suppressor-T, and memory-T cells). This differentiation allows them to perform
varied yet specific roles in the immune response. Each type of T-cell then multiplies by
cloning based upon a marker on the foreign body. All these differentiated and cloned T-cells
are identical and carry out specific functions to attack and kill the foreign
invader.
Initially, there is just a small number of T-cells that
respond. To reach maximum effect, this
first response requires approximately 36 hours. The exact mechanism of how these T-cells
perform their role in this immune response will not be addressed here,
however. But, and this is where the
specificity of the immune response occurs, the long-lived memory T-cells can
recall the antigen that initiated the response.
Therefore, in the future, if the
same antigen invades the body, thousands of T-cells will quickly respond.
CMI is effective is responding to invaders within cells
(intracellular), some cancer cells, and is often negatively involved in the
rejection of organ transplants. It also
aids in the other type of immune response, antibody-mediated immunity.
Antibody-Mediated Immunity:
Antibody-mediated immunity (AMI) is similar to CMI in
overall function, yet vastly different in how it achieves it. This type of immune response is also known as
a “humoral” response, meaning the immune response comes from the fluid in the
body (blood, lymph) rather than intracellularly. This response is exampled by
vaccinations and natural exposure to illnesses and disease and brought about
via antibodies. In addition, it also
uses prompts and responses from T-cells present in CMI for its initiation.
A different type of lymphocyte, B-cell, is used in this
response to protect from infection, but more importantly, to protect from
reinfection. B-cells do not travel to
conquer invaders; they stay and remain in lymph tissue (for example nodes,
spleen) until activated by a foreign entity (antigen) and called to
action. Some of the B-cells
differentiate into plasma cells, while others become memory B-cells. The memory B-cells provide a response to the
same invader that is quicker and much more powerful the second time
around. Plasma cells, however, secrete a
specific antibody that is carried by blood or lymph to the site of the specific
invader. AMI is effective against invaders that appear in bodily fluids and
those that are outside cells (extracellular) which typically include bacteria.
Antibodies function in various methods, and some tasks
include neutralizing invaders and blocking toxins so harmful effects are
lessened, confining and immobilizing invaders so they are less likely to travel
to other parts of the body, causing them to clump together to make phagocytosis
and elimination easier, and providing life-long reaction (which may decrease
over time, however) to lessen the effects of the same invader after an initial
immune response is stimulated.
There are five categories of antibodies (immunoglobulins
“Ig”): G, A, M, D, and E. They, however, will not be
discussed in depth in this writing.
However, some information is necessary.
IgG are the most abundant and
generally protect us from bacteria.
This is the only type of antibody that is transferred across the
placenta to aid in immunity in newborns.
It is the most numerous in the blood providing first response to a
pathogen, especially upon reinfection. IgA is found in saliva, mucus, and
sweat, for example, to provide protection for mucous membranes. IgM
are the antibodies found in blood ABO groups causing allergic reactions in
blood transfusions. IgD are primarily used for B-cell activation. IgE
are typically involved in reactions that involve allergies and hypersensitivity.
Auto-Immune Diseases:
As discussed
previously, the immune response is
triggered by antigens that are deemed foreign to the body. Antigens are recognized by certain markers,
surface cellular characteristics, which alert the immune response to an
invader. However, all cells have
markers, including those that belong and are natural to the body. Markers
distinguish cells: natural versus foreign. Normally
the body recognizes its own markers and does not attack itself because
these cells belong to the body and are required for survival. This is called self-tolerance. However,
with auto-immune diseases, the body fails to recognize “self” markers and
attacks cells and tissues that belong to the body. B-lymphocytes attack normal cells as if they
were responding to invader cells, and because of their capacity for memory and
ability to travel via the blood, their effects are often long-lasting.
Consider the U.S. Civil
War. The primary distinguishing marker
for identification between the North and South on and off the battlefield was
the color of their uniforms: blue versus gray, respectively. However, if the color of these uniforms could
not be recognized, due to fading, dirt, lack of a coat, whatever the cause,
friendly-fire could result and the same side could battle each other rather
than the opposition. Loosely speaking,
this is what occurs during auto-immune diseases. A failure in self-tolerance causes the immune
system to attack itself.
Auto-immune diseases are quite prevalent. They involve almost every system in the body
and attack numerous tissues. A brief list includes: Multiple Sclerosis (MS), Systemic Lupus Erythematous
(SLE), Hemolytic and Pernicious Anemia, Rheumatoid Arthritis (RA),
Glomerulonephritis, Insulin-Dependent Diabetes Mellitus (IDDM), Rheumatic
Fever, Addition’s Disease, Grave’s Disease, Myasthenia Gravis, Ulcerative
Colitis, Hashimoto’s Thyroiditis, as examples.
Generally, the treatment for these diseases is medication to suppress
the immune system from further attacking these organs. However, it is a fine line because
suppressing the immunity leaves the body susceptible for other infections and
illnesses.
Hypersensitivity (Allergic) Reaction & Anaphylaxis:
Allergies are associated with stuffy noses, watery eyes,
sinus congestion, coughing, rashes or hives etc.
often due to foods, flora, or medications.
They are caused by overreaction to an antigen (called an “allergen” when
associated with allergies). Once the
body encounters an allergen, non-specific resistance is initiated. Typically, the first signs of an allergy are
diffuse and general. However, upon the
second contact, memory cells and possibly antibodies present from the first
reaction provide a stronger reaction to the allergen. Some allergy reactions can be simply annoying
– however, others can be life-threatening.
Allergies are immune-mediated responses. For numerous and often unknown reasons, the
body acts negatively towards this allergen and uses specific and non-specific
responses to eliminate it. The specific antibody
that causes this reaction is IgE.
However, cell-mediated responses are often seen, as in reactions with
watery eyes and sneezing.
Common allergens are numerous and encompass many
categories; they may be ingested, inhaled, or placed topically on the skin, for
example. They are specific to an individual, and there
often appears to be a genetic component involved. Allergens can be food-based,
such as peanut butter, milk, eggs, strawberries, and shellfish. Environmental
materials and plants that can provoke allergies include dust, ragweed,
pollen, mold, poison ivy, and grass. Medications that trigger allergies include
penicillin, ACTH as well as vitamins such as thymine and folic acid. Vaccines, such as for measles or flu, used to
provide an immune response, and composed of a suspension fluid and antigen often
cause allergies. But it is often the liquids that carry the vaccine that elicit
the allergic response. Venomous bites from bees, wasps, and
snakes and even topical ointments and cosmetics also can provoke
allergies.
Often, these allergic reactions or irritations are not
lethal and merely require avoidance of the substance (food or drugs) once
identified or the use of over-the-counter remedies to lessen symptoms
(environmental). However, depending on
severity of the response invoked, they can cause a serious, dangerous, and a
critical reaction known as anaphylaxis.
Anaphylaxis is a severe, often life-threatening, reaction
to an allergen. Only one previous exposure to an allergen can
initiate this immune response, which may first appear as general and diffuse,
with hives or rashes, perhaps some edema around the mouth or wheezing, for
example. Even this first response to the allergen could be very serious,
however. Often, though, is it not until the second
exposure when the severity to the allergen is known. The second immune response is severe and
quick, and while its function it to protect the body, it often puts the body in
danger.
From inflammatory and immune responses as well as from the
release of other body chemicals, histamines for example, blood vessels dilate
so that blood moves faster, often assessed as redness and edema, if the area is
external. This, however, causes other
structures, such as muscles in the airways to decrease and contract, causing
breathing difficulties due to this airway obstruction. As mucus increases, combined with reduced
airways, breathing is further compromised.
Wheezing and shortness of breath is detected. There can also be decreased cardiovascular
functioning caused by the dilation of blood vessels and fluid loss to other
parts of the body.
Severe and systemic anaphylactic reactions require
emergency actions to counteract the body’s excessive immune response. This is done by use of an “epi-pen”. This medication, which is administered into
the upper thigh via a needle without removing clothes, provides a dose of
epinephrine. Epinephrine is the same
medication used for cardiac arrests, although in a smaller dosage, to open the
airways and provide support for the cardiac system. Often a second epi-pen injection is
required.
The Inflammatory Process Contrasted with Infection:
There is often a
misunderstanding of inflammation versus infection. Inflammation,
dictated by the inflammatory process, is a natural, general, biological, immune
response caused by an insult to the body.
This may be a cut, a surgical wound as well as any kind of internal or
external tissue trauma.
Infection does not have to be present for the body to
elicit inflammation. In fact, inflammation often occurs without
infection. However, inflammation is
always present when there is infection.
Infection happens when bacteria
invades that part of the body that was injured. Inflammation first occurs but if it cannot heal
the wound before a pathogen invades it, infection then results.
Inflammation is the
response of the body to heal itself.
Infection is the invasion of pathogens.
The inflammatory response is protective and
involves immune cells, blood cells, and other chemical substances. It is an innate, inborn, and a native
response because it occurs in reaction to any type of injury in any part of the
body and it does not require a pathogen or previous history to start the
response. Trauma, burns, radiation, bacteria,
viruses, temperature extremes, etc.
can initiate it. Four classic symptoms of inflammation occur in response to this
process: they include redness (rubor),
increased warmth (calor), swelling (tumor), and pain (dolor).
The inflammatory process and function are simple and occurs in three distinct steps after any injury: to
eliminate further injury (localization); remove dead cells, damaged tissue, and
debris (neutralization); and begin the repair process (resolution). This is done by increasing blood flow to the
area causing erythema (heat and redness).
As the blood flow rushes in, the injury is walled off to protect
surrounding tissue. As white blood cells
(leukocytes) and other cellular and blood components enter the damaged area,
they engulf dead tissue and any bacteria that may be present. Damaged tissue is then replaced by viable
functioning cells to promote healing possibly with the formation of a scar.
The inflammatory
response is conservative and general, but It is often modified depending on the
nature of the injury, location and site, and the injury’s severity. However, sometimes the response is
harmful. For example, if the response is
insufficient, this can lead to infection and/or increased tissue
destruction. If the response is too
great, this can lead to hypersensitivity causing hay fever, for example.
Infection, however, is a trauma to the body that could not
be resolved prior to being invaded by bacteria, fungi, or any other
pathogen. The presence and growth of
these organisms produce tissue damage. The
injury already initiated the inflammatory process. However, if the inflammatory response is
insufficient and cannot resolve bacterial infection and growth, infection results.
Curing infections requires a specific immune response, a response that is
dictated by a specific invader. As white
blood cells and other components continue to engulf foreign matter, the wound
bed becomes filled with the dead matter of the blood cells and bacteria. This forms pus (purulent exudate). The color of this exudate often is specific
to particular bacteria. Particular types
of white blood cells are produced, and a particular immune response is then
initiated: cell-mediated immunity or antibody-mediated immunity, as detailed
previously.
The uncontrolled growth
of cells within the body, cancer, represents a failure of the immune system,
which is why we discuss it here, next.
CANCER
The National Center for
Chronic Disease and Prevention and Health lists cancer as the second leading
cause of deaths in the United States. It can have
a hereditary component, can be environmental; may arise from one single cell
that mutates; and unfortunately, often stems from our own unhealthy
living. There is no place in the body
exempt from cancer. Every bodily system,
organ, and cell can be afflicted by cancer.
It can affect every one of the eleven systems described herein.
Cancer is rogue cells that invade healthy tissues with the
desire and ability to capture the body.
Cancer cells have unique properties that make them more resistant to
death and more likely to survive and grow than normal cells. They grow in the absence of growth factors
(autocrine stimulation) and secrete substances to promote blood vessels to grow
to them (angiogenesis). Cancer cells
overpopulate themselves by lacking contact inhibitors, which usually tell
normal cells when viable space is absent.
By lacking boundaries, cancer cells migrate to any other part of the
body. They wander and are less adhesive
to one location, thereby duplicating one tissue’s cancer in a completely
different tissue (metastasis). Lastly,
even with all these other reproducing abilities, they have a survival
mechanism. Normal cells have a
self-destructive ability when they are older or damaged (apoptosis). Cancer cells lack apoptosis.
The specific care for
the cancer patient is often unique, depending on the tissue or system that has
the cancer. All those possibilities cannot be addressed
here. In addition, methods to treat
cancer are also quite varied; they include chemotherapy, radiation,
immunotherapy, surgery, and any combination of these, depending on the
cancer location and stage, and the health of the patient.
In general, we can
provide some guidelines here.
Nutrition
Regardless of the
method used to treat cancer, adequate nutrition by way of proteins and fluids
are essential. The patient may be
anorexic. Nausea and vomiting are often
present. The mouth, may be inflamed
(stomatitis) and cause pain, preventing ingestion by mouth. The patient may have an inability to taste
food, decreasing desire to eat. Gag
reflexes could be diminished, making the patient susceptible to aspiration
pneumonia.
Some ways to battle
these circumstances are listed below.
Both natural and medically provided methods to obtain nutrition are
noted:
· Small, frequent meals;
· Bland or non-spicy
foods;
· Soft foods;
· Frequent mouth care
including washes with non-alcohol-containing fluids;
· Protein drinks,
electrolyte fluids, non-diuretic drinks; and
· Comfort food – whatever
they may want which they can tolerate to enhance natural consumption. Unless discouraged by oncologists and medical
professionals, during treatment, nutrition is essential and usually encouraged
in any form.
· Central Venous
Catheters, such as mediports surgically implanted in the chest wall, provide
long-term access to a large vein just above or at the entrance of the heart,
necessary for total parenteral nutrition lasting for years. Peripherally Inserted Central Catheters (PICC
lines), placed in an arm, provide shorter-term access, for about one month. Special nutritional preparations are available
for all these accesses besides allowing venous access for chemotherapy.
· Nasogastric Tubes are
for short-term use; they require care due to risk for aspiration pneumonia and
skin breakdown where the tube rests on the skin. Pumps usually administer feedings on a slow
and regular hourly basis throughout the day.
A small flexible tube is inserted in the nostril (nares) down into the
esophagus and into the stomach to deliver the nutrient. The placement of the tube is non-surgical and
eliminates those risks but can be uncomfortable.
· Percutaneous Endoscopic
Gastrostomy (PEG ) or Jejunostomy
(PEJ) tubes provide for successful long-term use when changed regularly and
with proper care. Inserted directly
through the skin and abdominal wall into gastric region or small intestine, the
tube bypasses the pulmonary system, thereby decreasing risk of aspiration
pneumonia, without eliminating it.
Musculoskeletal and Skin Care
Emphasis should be
placed on the patient’s skin and on the range of motion. Due to problems of nutrition, medical
treatments, and general apathy and weakness, problems to these areas could be
numerous and rapid in their presentation.
In general, some guidelines are as follows:
Provide
basic skin care as you would provide to yourself. The skin should be washed frequently, dried,
and lotion applied as needed and as desired.
The skin is the largest organ and requires protein for healing and basic
metabolic functions to replenish it. In
a weakened state, your patient may be lethargic and not do basic turning
functions. Without movement, the skin
breaks down. If you add perspiration,
bodily fluids, and nutritional deficiencies, the potential ramifications could
prove deadly. By simply providing basic
skin care often, you are accomplishing waste removal, cleansing, and assessment
of the overall condition of the skin.
This skin assessment, especially if your patient is undergoing radiation
treatments, provides early recognition of skin damage. In addition, the warmth of the water, the
aroma of the soap and lotion, and the touch on the skin can also be very
psychologically therapeutic to your patient.
Wash
your patient’s hair. This doesn’t have to be done daily but should
be done in some manner. Not only does it
provide a loving kindness, the residuals of nightly sweats and odors are
eliminated. It may well not be the
upmost medical treatment that is provided, but it is one that may lift your
patient’s mood the most.
While
performing the bath, or at various times throughout the day, provide
range-of-motion exercises. In a weakened
state, your patient will not be ambulating as usual. Joints will get stiff, and ultimately the
motion range will decrease if the joints are not exercised regularly. Exercise the joints in an orderly motion
starting with the largest joints, such as the shoulder, then working to the
smallest in progression, for example: to the elbow, wrist, fingers, and finger
joints. Encourage the patient to move
often and to participate in these exercises.
The more the patients can do for themselves, the better their skin will
be maintained, as they will be moving, their self-esteem is enhanced, and they
may have less damage to these areas, requiring less rehabilitation time.
Encourage
movement, exercise, and ambulation in any form. Just a simple walk to and from the kitchen or
from the bedroom to the bathroom provides support for the skeletal system. It strengthens muscles, encourages appetite,
promotes balance, prohibits foot drop, and all this is accomplished by merely
keeping the patient active. Once a
patient is bedridden, it is far more difficult to reverse the process.
Pain Management
Cancer often causes a
great amount of pain. Observe if your patient is experiencing any
discomfort. Ask the patient to rate the
pain on a scale of one to ten, where one is no pain and ten is the worst
possible. Administer pain medication as needed and do not be afraid to advocate
for your family member and discuss the situation with their doctor and nurse. It is important to note that while in severe
pain, your patient will be unable to eat, sleep, or perform any activities of
daily living.
While the treatments
for cancer will vary and the ramifications from the disease process are
numerous, dependent on the type, stage, and severity, you can provide these
simple remedial measures. They may be
simple and obvious, but they can be forgotten while during managing care for
your family member.
###
Contact information:
Diane R. Beggin, RN
40 Sycamore Drive
Montgomery, NY 12549
No comments:
Post a Comment